Introduction to Java Programming

Handout Lecture_3_Exercises.doc

Lecture 3 Exercises – Objects and Arrays

The Movement Follower Robot

This exercise involves creating a robot that is capable of following a series of instructions. Each instruction will be modelled as an individual “movement” object.

Instructions

Firstly create a new class called Movement and a new robot called MovementFollower that conform to the following UML diagram. Note that constants are indicated as public static final variables.

[image: image1.png]VivemantFlover

[erections: MovementD

pertoms

Vivemant

st o FORWARD i =0

fin: void

dohsvemens(movement: Movement void

st final BACKWARD: it
st s LEFT- =2
st s RIGHT: =3
arecton:n.

dstance:

r——
lgaetistanceos nt
|saspvementiairection: intdistance: il

What Each Method Should Do

The Movement Class

The implementation of the Movement class is very simple. It should simply store the values passed into its constructor in some private attributes. These values should be returned when the appropriate “get” method is called. The values for the direction attribute must be one of the constants (e.g. FORWARD) defined by the class.

The MovementFollower Robot

In the constructor of the MovementFollower object, initialise an array of Movement objects. As the diagram shows, each Movement object is initialised with a direction (forward, backward, etc) and a distance that describes the movement. The exact number of movements that the robot is to perform is up to you.

In the run method of the robot, loop through the array of Movement objects calling the doMovement method for each Movement object in turn.

The implementation of the doMovement method should look at the direction value stored in the Movement object that is passed in as a parameter (using the getDirection method). It should decide whether to move forward, backward, to the left or to the right depending on the value returned. You can then use the ahead, back, turnLeft and turnRight methods of your robot to move in the correct direction for the distance specified in the Movement object.

The Damage Reporter Robot

This exercise involves creating a robot that will keep track of how much damage it receives from each robot in the simulation. If the robot wins or dies then it will use this data to produce a simple report of how much damage it received from each robot. The total damage received from each robot will be held in a “damage report” object.

Instructions

Create the following two classes (a new class called DamageReport, and a new robot called DamageReporter) according to the details in the UML diagram below:

[image: image2.png]Damagaapertar

Damageepan

repons: DamageReporl

ot

aamageinicted: doule

_enemy: g

fin: void

o pamage epon: void

hontieeyButei: ey et v v

ontinguin: winEverty veid

]

[rtEremytiamen
lradaDamage(éamage: doubey: void
[———

|sDamsgeReporenemytame: song)

What Each Method Should Do

The DamageReport class
This class has a very simple implementation. It should store the name of the enemy passed into its constructor in a private attribute. This indicates which enemy the damage report is for.

The other private attribute (_damageInflicted) should simply store how much damage that enemy robot has done. Initially this will be zero (set in the constructor). Calling the addDamage method should increment this variable. The total damage can be retrieved with the getTotalDamage method.

The DamageReporter Robot
The robot will maintain an array of DamageReport objects, which will contain one DamageReport for each robot that has hit it. The array can be initialised to the correct size in the run method by calling the getOthers method. This will return the number of other robots in the arena. (The rest of the run method can do any movements you like.)

The robot also needs to maintain a counter that indicates how many DamageReport objects are actually in the array (which may be less than the total length of the array, if the robot hasn’t been damaged by every robot in the arena). Each time a new DamageReport is added, this counter will be updated.

The onHitByBullet method should do the following:

· Determine which robot has hit you by calling the getName method on the HitByBulletEvent object that is passed in as a parameter.

· If this is the first time you’ve been hit by anyone, then add a new damage report for this robot to the array. The amount of damage done can be determined by calling the getPower method on the onHitByBulletEvent object.

· If you’ve been hit before, then loop through the DamageReport array and see if any of the DamageReport objects are recording damage from this enemy. If they are, then call addDamage to increment the record of how much damage you’ve taken.

· When adding a new item to the array, remember to increment the counter so you know the real size of the array. (Otherwise you’ll get NullPointerExceptions!).

The onWin and onDeath methods should just call the printDamageReport method. This ensures that whether the robot wins the match or dies, you’ll see a damage report.

The printDamageReport method should loop through the array of damage reports, and print out the name of each robot and the damage that it inflicted.

L.Dodds, February 2003

3/3

