Introduction to Java Programming

Handout #4 Java Syntax Reference.doc

Java Syntax Reference
This handout is designed as a reference sheet for common Java syntax. For a more complete reference see The Java Tutorial, or the book “Java in a Nutshell”.
Table of Contents
2Operators

2Assignment

2Arithmetic

2Increment and Decrement

3Boolean

3Logical

3Shift

4Casts

4Instanceof

4Flow Of Control

4If Statement

5Switch Statement

6For Loop

7While Loop

7Variables

7Primitive Data Types

8Declaring a Variable

8Declaring an Array

9Declaring Constants

10Packages

10Naming

10Defining a Package

10Importing a Package

11Classes and Interfaces

11Defining a Class

11Defining an Interface

12Extending a Class

12Extending an Interface

12Implementing an Interface

13Methods

13Defining a Method

13Defining a Method with Parameters

14Constructors

14Objects

14Creating (Instantiating) an Object

15Modifiers

15Visibility Modifiers

16Public Classes and Interfaces

16Abstract Classes and Methods

17Final Classes Methods and Variables

17Static Methods and Variables

18Exceptions

18Declaring a method to throw an Exception

18Throwing an Exception

19Handling (Catching) an Exception

19Miscellaneous

19Comments

20Keywords

20Legal Names

Operators

Assignment

<variable name> = <expression>;

Example:

int myNumber;

myNumber = 1;

· <expression> is a variable, function, or parameter -- or any combination of them, with operators and parentheses -- that evaluates to the same type as <variable name>.
· If <variable name> has been declared final, then <variable name> can only be assigned a value when it is declared. All subsequent attempts to assign a value to <variable name> are compile time errors.
Arithmetic

	+
	Addition

	-
	Subtraction

	/
	Division, ignoring remainder

	*
	Multiplication

	%
	Modulo, remainder of dividing x by y

Increment and Decrement

	Operator
	Description
	Example

	++
	Adds one to the variable and stores and stores the new value in that variable
	x++

	--
	Removes one from the variable and stores the new value in that variable
	y--

	+=
	Adds the specified number to the variable and stores the new value in that variable
	x += 5

	--
	Removes the specified number to the variable and stores the new value in that variable
	y -= 5

	*=
	Multiplies the variable by the specified number and stores the new value in that variable
	x *= 2

	/=
	Divides the variable by the specified number and stores the integer result in that variable
	y /= 2

Boolean

	!=
	not equal to

	>
	greater than

	<
	less than

	>=
	greater than or equal to

	<=
	less than or equal to

	==
	equal to

· Note that when testing equality of objects, use the equals method. E.g. object1.equals(object2). This will test whether the objects are equal in terms of their attributes, whereas using == will only test whether the two variables are actually references to the same object.
Logical
	Operator
	Description
	Example

	&&
	logical AND
	A && B

	||
	logical OR
	A || B

	!
	logical NOT (logical negation)
	!A

	&
	boolean logical AND
(both operands must be booleans)
	true & true

	^
	boolean logical exclusive OR
(both operands must be booleans)
	false ^ false

	|
	boolean logical inclusive OR
(both operands must be booleans)
	true | false

· Note that similarly to the assignment operators, there are short forms available for working with the logical operators. E.g. x |= y perform a logical OR of x and y and then assigns this new value to x.

Shift

	Operator
	Use
	Operation

	>>
	op1 >> op2
	shift bits of op1 right by distance op2

	<<
	op1 << op2
	shift bits of op1 left by distance op2

	>>>
	op1 >>> op2
	shift bits of op1 right by distance op2 (unsigned)

Casts

<variable name 1> = (<new type>)<variable name 2>;

Example:

float myFloat;

int myInt;

myFloat = (int)myInt;

· Casting does not change an object, just the type used to reference it.

· Casting from one primitive type to another may cause some loss of precision.

· When casting an object, if the cast is not legal then a ClassCastException is thrown.

Instanceof

The instanceof operator checks whether one object is an instance of another,

<variable> instanceof <classname>

Example:

myString instanceof String

· An object is an instance of a class if it directly or indirectly descends from that class.
Flow Of Control

If Statement

 if(<condition>) {

 <statementsToDoIfConditionTrue>

 }

If-Else:
 if(<condition>) {

 <statementsToDoIfConditionTrue>

 } else {

 <statementsToDoIfConditionFalse>

 }

If-Else-If:

 if(<condition>) {

 <statementsToDoIfConditionTrue>

 } else if(<otherCondition>) {

 <statementsToDoIfOtherConditionTrue>

 } else {

 <statementsToDoIfNoneAreTrue>

 }

Examples:

if (x && y) {

 /* code if true */

}

if (shoppingCart.isEmpty())

{

 /* code is shopping cart empty

}

else

{

 /* code if shopping cart is not empty

}

Switch Statement
switch <selector> {

 case <value 1> :

 <statement 1>;

 break;

 case <value 2> :

 <statement 2>;

 break;

 case <value n> :

 <statement n>;

 break;

 default :

 <statement n+1>

 break;

}

Example:

switch (shoppingCart.size())

{

 case 1:

 {

 showMessage(“You have one item in your shopping cart”);

 break;

 }

 case 2:

 {

 showMessage(“You have two items in your shopping cart”);

 break;

 }

 default:

 {

 showMessage(“You have no items in your shopping cart”);

 }

}

· The break statement causes the program to proceed with the first statement after the switch structure. The break statement is used because otherwise the cases of the switch statement would otherwise run together. If break is not used anywhere in a switch structure, then each time a match occurs in the structure, the statements for all the remaining cases will be executed (or until a break is encountered).
· The <selector> for a select statement must be an integer, char, or an enumerated type.
· If the <selector> does not match any of the values, then the default statement is executed.
For Loop

for (<counter initialization>; <loop continuation condition>; <counter increment>) {

/* Java statements */

}

Example:

//count from one to ten

for (int i=1; i<10; i++) {

 System.out.println(i);
}

· <counter initialization> is a variable of an ordinal type, such as an integer initialized to a value.

· The <loop continuation condition> determines how long the program will continue to loop.

· <counter increment> increments the counter using an increment operator, usually <counter>++.

· When the for structure begins executing, the counter is initialized. Then, the <loop continuation condition> is checked. If the condition is satisfied, then the statements in the loop body are executed. Finally the counter is incremented. The loop begins again by checking the <loop continuation condition>. This process continues until the control variable no longer satisfies the <loop continuation condition>. The program then continues by performing the first statement after the loop.

· A break statement inside a for loop causes the loop to end

· A continue statement inside a for loop skips the remaining statements in the body of that structure, and proceeds with the next iteration of the loop

While Loop
while (<continuation condition>) {

/* Java statements */

}

Example:

int num = 0;

while (num < 10) {

/* Java statements */

num++;

}

· <continuation condition> is a variable or expression that evaluates to a boolean.

· <continuation condition> is tested before the body of the loop is executed. If <continuation condition> is true, the body is executed. When the loop body has been executed, the <continuation condition> is checked again. The loop continues to execute until the <continuation conditon> is false.
· A break statement inside a while loop causes the loop to end

· A continue statement inside a while loop skips the remaining statements in the body of that structure, and proceeds with the next iteration of the loop
Variables

Primitive Data Types

There are eight primitive data types in Java
	Type
	Description
	Size

	Boolean
	A Boolean value (true or false)
	1 bit. true or false

	Byte
	Byte-length integer
	1 byte

	Short
	Short integer
	2 bytes

	Int
	Integer
	4 bytes

	Long
	Long Integer
	8 bytes

	Float
	Single precision floating point number
	4 bytes

	Double
	Double precision floating point number
	8 bytes

	Char
	A single character
	2 bytes. Unicode character

· As well as primitive types, Java has the notion of reference types. Arrays, classes and interfaces are all reference types. I.e. they refer to an object in memory rather than a primitive value. A reference type is equivalent to a pointer in C, but the objects are referenced by name rather than memory location.
Declaring a Variable

<modifiers> <datatype> <variable name>;

…or, to initialize the variable when it’s declared:

<modifiers> <datatype> <variable name> = <expression>;

· An instance variable describes the state of an instance. It is declared within the scope of a class. If an instance variable is given an initial value, that value is stored in the variable before the first statement of the constructor of the object is executed.
· A local variable is a temporary storage place of information. It is declared within the scope of an individual method.
· <modifiers> is an optional space-separated list of valid modifiers. Only instance variables can have a list of modifiers (e.g. private final). See Modifiers.
· <datatype>, either the name of a class or a primitive type, declares to which type of class the variable will refer to, or which primitive type the variable will be.

· <variable name> is any valid identifier which is unique to the current scope.

· <expression> is an optional variable, function, or parameter - or any combination of them, with operators and parentheses - that evaluates to the same type as <datatype> and whose value the variable should assume immediately upon creation.
Declaring an Array

<modifiers> <data type>[] <array name>;

<array name> = new <data type>[<array size>];

or, to allocate the size of the array when its declared:

<modifiers> <data type>[] <array name> = new <data type>[<array size>];

or, to initialize the array when its declared:

<modifiers> <data type>[] <array name> = {<comma separated list of values>};

Examples:

private int[] myArray; // declares the array

myArray = new int[20]; // allocates the array to hold 20 ints

private int[] myArray = new int[20];

// creates a five element array of integers and initializes

// the elements to 1, 2, 3, 4, 5

private int[] myArray = {1, 2, 3, 4, 5};

· Arrays are zero-based.

· <modifiers> is an optional space-separated list of valid modifiers. See Modifiers.
· <data type>, either the name of a class or a primitive type, declares to what type the array will hold references.

· <variable name> is any valid identifier which is unique to the current scope.

· <array size> is an integer that allocates the size of the array (how many references it can hold).

· <comma-separated list of values> are items of the declared data type. This list initializes the size of the array to the number of values, and initializes the elements of the array to those values.
· Arrays have a length property which hold their size, e.g. myArray.length

· Rather than writing your own code to copy one array into another use the System.arraycopy() method.

Declaring Constants

A class constant:

<visibility modifier> static final <datatype> <constant name> = <constant value>;

A constant variable inside an object or method:

final <datatype> <constant name> = <constant value>;

· Use class constants for ‘global variables’ that must be shared by all instances of a class.

· Use constant variables inside an object to ensure that the variable is only ever assigned a single value.
Packages

Naming

A package is a group of Java classes. All classes within a package must have a unique name. The standard convention is to name packages using a “reverse domain name” format. For example if I own the domain name mydomain.com then I would give my packages names like
com.mydomain.package1

com.mydomain.package2

This convention has arisen to avoid naming clashes in code created by different companies.

Of course if you don’t own a domain name then you’re free to name your packages as appropriate. Using the application name as a prefix is a good option. As a rule you should always place your code in a package.

Note: when your code is compiled in Java classes, the Java compiler will organise the classes into directories according to the package names. E.g. all classes in the com.mydomain.package1 package will be compiled into the com/mydomain/package1/ directory.

Defining a Package

package <package name>;
The package statement must appear before any other Java statements in the file, or be omitted entirely. If the package statement is omitted, then a file is assumed to be in the default package, to which all package-less classes belong.

All files in the same package must use the same <package name>.
Importing a Package

Classes in a package must be referenced by their fully qualified class name (e.g. com.mydomain.package1.MyClass) unless that package is imported.
import <package name>.<class name>;

import <package name>.<interface name>;

import <package name>.*;
· <package name> is a valid package identifier which is not the current package.

· <class name> is any public class defined in <package name>.

· <interface name> is any public interface defined in <package name>.

· An import that uses only a class or interface name only imports that single class.

· Using an asterisk will cause all classes in that package to be imported.

· Java always imports java.lang.* for every file at compile-time.

Classes and Interfaces
Defining a Class

<modifiers> class <class name> {

/* Instance variables declared and methods defined here */

}

Example:

public class myClass {

/* instance variables */

/* constructors */
/* methods */

}

· For definition of <modifiers> see Modifiers.

· A class definition normally contains one or more constructors. If a constructor is not defined, the Java compiler will supply a default constructor automatically.
Defining an Interface

<modifiers> interface <interface name> {

/* Abstract methods and class constants declared here */

}

Example:

public interface myInterface {

 int MY_CONSTANT = 10;

 void myMethod();

}

· For definition of <modifiers> see Visibility Modifiers.

· A method declared in an interface cannot have a default implementation, nor can it be declared private, protected, static, final, or synchronized.

· An instance variable declared in an interface is considered a class constant. It cannot be declared private, protected, or synchronized.
· All methods declared in an interface are implicitly abstract and public.

· All instance variables declared in an interface are implicitly public, static, and final, and therefore must include an initial value in the declaration.
Extending a Class

<modifiers> class <class name> extends <superclass name> {
}

Example:
public class MotorVehicle extends Vehicle {

}

· <class name> will inherit all non-private methods and instance variables defined in <superclass name>. Thus the methods and instance variables defined for <class name> need be only those things needed to specialize the class.

· A class that implements interfaces can also inherit from a superclass. The superclass must be extended before the interfaces are implemented:
public class myClass extends superClass implements myInterface {

}

Extending an Interface

<modifiers> interface <interface name> extends <superinterface list> {
/* Class constants and abstract methods declared here */

}

Example:

public interface myInterface extends superInterface {

/* Class constants and abstract methods declared here */

}

· <superinterface list> is a comma-separated list of interfaces from which this interface should inherit.

· <interface name> will inherit all the method declarations and class constants in each of the interfaces listed in <superinterface list>. Thus the methods and class constants defined for <interface name> need be only those things needed to specialize the interface.
Implementing an Interface

<modifiers> class <class name> implements <interface list> {

/* Instance variables declared and methods defined here */

}

Example:

public class myClass implements myInterface {

/* Instance variables declared and methods defined here */

}

· <interface list> is a comma-separated list of interfaces which the class should implement. It is expected that a class which implements an interface will provide a definition for every method declared in that interface. If it does not, then the class must be declared abstract.

· <class name> has direct access to all class constants defined in the interfaces it implements.

Methods

Defining a Method
<modifiers> <return types> <method name>() {

/* statements */

}

Example:

private void myMethod() {

/* statements */

}

· <modifiers>. See Modifiers.
· <return type> is either void (meaning that this method does not return a value), a name of a class, or a base type.

· <method name> is any valid identifier which is unique to the class. It names a block of statements which, when executed in order, define a behavior for the class.
Defining a Method with Parameters

<modifiers> <return type> <method name>(<parameter list>) {

/* statements */
}

Where <parameter list> is structured as follows:

<parameter type1> <parameter name1>,

<parameter type2> <parameter name2>,

<parameter typeN> <parameter nameN>

Example:

public void drawCircle(int radius, Color colour) {

/* statements */

}

· A method can be overloaded. This means that multiple methods with the same name but different parameter lists can be declared within the same class. The JVM will determine the correct method to run by examining the parameters passed used in the method call. Methods cannot be overloaded to have different return types.
Constructors

<modifiers> <class name>(<parameter list>) {

/* statements to initialize the object */

}

Example:

public class myClass {

 /* Instance variables declared */

 public myClass() { // the Constructor

 /* statements to initialize objects of myClass */

 }

}

· A constructor is a method with the same name as the class.

· The constructor is invoked automatically each time an object of that class is instantiated.

· Constructors may be overloaded to provide a variety of means for initializing an object.

· Constructors cannot specify return types or return values.
Objects
Creating (Instantiating) an Object
<variable name> = new <class name>();

Example:

Shape circle;

circle = new Shape();
· <variable name> is a variable or parameter of the same type as <class name>.
· When executed, Java will create a new instance of <class name> and call the appropriate constructor for the <class name> on the new instance. A reference to the new object is stored in <variable name>.

Modifiers

There are various modifiers that can be applied when declaring classes, interfaces, methods and variables. These are reviewed in the following sections. In some cases modifiers have subtly different meaning depending on the type of structure (e.g. class or method) to which they’re being applied.
Visibility Modifiers

Visibility modifiers control the encapsulation of a class, its attributes and behaviours
	Public
	A method which is declared public is visible to every object, including those outside of the package in which the class which contains the method is defined.

Likewise, an instance variable declared public can be accessed and modified by any object. You should never do this, as it breaks encapsulation.
Subclasses inherit public methods and instance variables and have full access to them.

	Protected
	A protected method is accessible by any object in the same package, or by any subclass, regardless of package.

A protected instance variable can also be accessed and modified by any object in the same package.

Subclasses inherit protected instance variables and have full control over them.

	Private
	A private method or instance variable is visible only to the object in which it is defined or declared.

Subclasses do not inherit private methods or instance variables.

	None
	Default, or “package scope”.

The method or variable is only visible to objects in the same package.

Public Classes and Interfaces

Declare the class or interface as public to ensure that it can be accessed from outside its package. This is the most common way of declaring Java classes.

public <other modifiers> class <class name> {

/* Instance variables declared and methods defined here */

}

public interface <interface name> {

/* Interface definition here */

}

Example:

public class Circle {

/* Instance variables declared and methods defined here */

}

· By defining a class as public, a class in another package can instantiate that class, inherit from it, maintain a reference to an instance of it, or access its static methods and instance variables (if any).

· By defining an interface as public, an interface in another class can inherit from it or have a reference to an instance of it as a parameter, and a class in another package can implement it, maintain a reference to an instance of an implementation of it, or access it class constants.
Abstract Classes and Methods

Abstract method:
abstract <other modifiers> <return type> <method name>();

Abstract class:

abstract <other modifiers> class <class name> {

/* Instance variables declared and methods defined here. */

}

Examples:

abstract public void animate();

abstract public class Shape {

/* Instance variables declared and methods defined here. */

}

· A method which is declared abstract is not followed by a definition; instead, the declaration line simply ends in a semicolon. This indicates that a subclass must provide an implementation of this method, otherwise it cannot be instantiated.

· A class which is declared abstract cannot be instantiated. It is available for sub-classing only. An abstract class often has one or more abstract methods.
· A class or method cannot be declared as both abstract and final.

· A variable cannot be declared abstract.
Final Classes Methods and Variables
Final variable:
final <other modifiers> <data type> <constant name> = <constant value>;

Final method:
final <other modifiers> <return type> <method name>(<parameter list>) {

/* Java statements */

}

Final class:
final <other modifiers> class <class name> {

/* Instance variables declared and methods defined */

}

Examples:
final int constantNum = 1;

final void myMethod() {

/* Java statements */

}

final class myClass {

/* Instance variables declared and methods defined here */

}

· The final modifier can be used with variables to create constants. A value must be assigned to the variable at declaration, and then cannot be changed. See also Declaring Constants
· A final method cannot be redefined in a subclass.

· A final class cannot be subclassed.
Static Methods and Variables

Static method:
static <other modifiers> <return type> <method name>(<parameter list>) {

/* Java statements here */

}

Static variable:
static <other modifiers> <data type> <variable name>;

Examples:

static void myMethod() {

/* Java statements */

}

static int myNumber;

· A method which is declared static can be accessed without first creating an instance of the class which contains it. This is because static methods and fields belong to the class and not individual objects of that class.
· While an instance of a class normally gets its own set of instance variables when it is created, there exists only one instantiation of a static variable for all instances of the class. Therefore, if one instance changes the value of a static variable, that change is seen by other instances of the class.

· A static method can refer to other methods and instance variables of the class which contains it only if they are also declared static.

· A static method is implicitly final, so it cannot also be declared abstract, and cannot be redefined in a subclass. Inclusion of the final modifier is optional.
Exceptions
Declaring a method to throw an Exception

<modifiers> <return type> <method name>(<parameter list>) throws <list of Throwables> {

/* Java statements */

}

Example:

public void myMethod() throws Exception {

/* Java statements */

}

· Every method that throws exceptions should declare what exceptions it throws in the method declaration. A method that calls another method must handle the exceptions thrown by that method.

· <list of Throwables> is a space-separated list of the class Throwable and its subclasses.
Throwing an Exception

throw new <Throwable>;

or

throw e; // where e is an instance of the Throwable class or one of its subclasses

Example:

if (problemEncountered)

{

throw new Exception();

}
· <Throwable> must be the Throwable class or one of its subclasses.

· When a method throws an exception, it should declare the exceptions it may throw in the method declaration using the throws statement.
Handling (Catching) an Exception

try {

/* Statements which may throw an exception */

}

catch(<Throwable> <exception handler 1>) {

/* Statements to do if an exeption of type Throwable 1 is thrown */

}

finally {

/* Statements to do regardless of whether or not an exception is thrown. */

}

Example:

try {

 readFile();

}

catch (Exception e) {

 /* Statements to do if problem encountered reading file */

 log(“Problem reading file”);
}

finally {

 closeTheFile();

}

· The basic structure is: try to do something, catch exceptions that signal problems, finally do some clean-up.

· It is legal to have multiple catch blocks, each of which handle a specific type of exception.

· It’s possible to omit the catch block and just have a try…finally structure. This is recommended where some clean-up is essential and must be done even if the JVM encounters problems.
Miscellaneous

Comments

/* This is a comment. Useful for commenting a block of code*/

// This is also a comment. Useful for commenting a single line
/**
 * This is a comment which will appear in the
 * auto-generated documentation produced by Javadoc.
 * If it appears before a class, method or constant
 * declaration
 */
Keywords

A summary of the Java keywords. Note that const and goto are reserved but are not actually implemented.
	abstract
	default
	if
	private
	throw

	boolean
	do
	implements
	protected
	throws

	break
	double
	import
	public
	transient

	byte
	else
	instanceof
	return
	try

	case
	extends
	int
	short
	void

	catch
	final
	interface
	static
	volatile

	char
	finally
	long
	super
	while

	class
	float
	native
	switch
	

	const
	for
	new
	synchronized
	

	continue
	goto
	package
	this
	

Legal Names
· Valid identifiers must be a letter, underscore, or dollar sign followed by any number and combination of letters and numbers.

· An identifier cannot be a keyword.

· A class name must be unique to the package in which it is defined.

· No two methods can have the same name and parameter list.

· No two instance variables can have the same name.

· No two local variables can have the same name

L. Dodds, October 2002

19/20

