Introduction to Java 2 Programming

Handout #2 UML Reference.doc

UML Reference Sheet

The Unified Modelling Language (UML) is a programming language neutral means of describing the structure of an OO application. There are many different types of UML diagram each of which fulfil a particular purpose.

The following examples review the basic elements used in a UML class diagram, and are a useful way to describe and investigate Java applications without having to examine the code line by line.

Aggregation

[image: image1.png]ihole

Aggregation is shown by a line between the two classes, with a clear diamond at the start of the line indicating the aggregate object, i.e. the line goes from the whole to the part.

Aggregation is a form of association between two classes. Therefore the aggregation relationship can be annotated as described below.

Association

[image: image2.png]D R N
O rtmionsip name
ol Bere
Company. 1 [
wetksFor
employer employee

A line between two classes indicates a simple relationship. The line can be annotated with additional information that further defines the relationship:

· Its name

· The role of each class in the relationship

· The cardinality of the relationship.

Cardinality

Relationships in a UML diagram can indicate their cardinality. This shows how many instances of the objects are (or can be) involved in the relationship. Relationships can be

· 1 -- usually omitted if 1:1

· n – unlimited

· 0..1, 1..2, 1..n – a specified range

· 1..* -- one or more

· 0..* -- zero or more

The second example above indicates the following information about the relationship:

· The relationship is called worksFor. i.e. an Employee worksFor a Company
· In this relationship the Company class is the employer
· A Company can have one or many Employees, but an Employee only worksFor one Company (see below)
Comment

[image: image3.png][i 3 somment
ot the caes
Somecizzs

Some ez

A comment is simply a way to add additional documentation for the reader of a diagram.

Class

[image: image4.png]Wy Class

J——
someharscriba: Srng

[rbsthod: vea
heothenstnads: via

Classes are described as simple boxes that are divided up into three sections:

· Top – the name of the class

· Middle – the attributes of the class

· Bottom – the methods of the class

Attributes

attributeName: typeOfAttribute

Methods

methodName(ParameterType paramName, ParameterType2 param2Name, …): returnType

Visibility of Attributes and Methods

Methods and attributes definitions can optionally also indicate whether their visibility:
· Public (+)

· Protected (#)

· Private (-)

In the example both attributes are private, and both methods are public.

Implementing an Interface

[image: image5.png]<itertace>>
prnetle

o vois

image
Document

[t void [t void

An interface specifies a set of public behaviours (a “contract”) that a class exposes to the world. In UML an interface is shown as a class, but is often distinguished as an interface by the marker “<<interface>>”.

A dotted arrow from a class to an interface indicates that this class fulfils the contract specified by that interface. In the above example both Document and Image share a common interface, Printable.

Inheritance

[image: image6.png]SuperCiass

————
hsncthetstrod: v

S

————
lesdtionathodo: void

An arrow shows inheritance between classes, with the arrow pointing from the sub-class (or derived class) to the super-class (or base class)

The example diagram shows that instances of SubClass will have three methods:

· someMethod – inherited from the parent class

· anotherMethod – a polymorphic method inherited from the parent class. The behaviour is the same, but the implementation is different

· additionalMethod – a new method available only on the derived class

L. Dodds, October 2002

4/4

