Introduction to Java Programming

Handout #8 Lecture 4 Exercises.doc

Lecture 4 Exercises – Exploring OO Programming

Part 1 – Inheritance

Tips

1. Your syntax reference sheet (Handout #4) has examples of how to extend classes, write constructors, etc.

2. To invoke a super class method use the super keyword, as follows: super.superClassMethodName()
3. To invoke a super class constructor use the super keyword, as follows: super(“param”). This must be the first line of the constructor in the child class.
Exercises

1. Create and compile a class called Parent. Give it the following behaviour:

a. A default constructor that does nothing other than print out “Parent default constructor” using System.out
b. A single method called getMessage which returns a String, e.g. “Parent message”

2. Create and compile a class called Child. Give it the following behaviour

a. Do not give it a constructor

b. Override the parent’s getMessage method to return an alternative String. E.g. “Child message”

c. A main method which creates an instance of the Child object, and then writes the value returned by its getMessage method to the command line.

d. What happens when the class is run?

3. Alter the Child class to give it a default constructor which prints out “Child default constructor” when it’s called. Compile and run the application again and identify what happens.
4. Alter the implementation of the getMessage method on the Child class so that it first calls its parent class method and concatenates that with its own value to build a combined message. E.g. returning “Parent message and Child message”.

5. Alter the Parent class by 

a. Adding a new constructor that accepts a String argument which is used to initialise a private member variable, myMessage. Again write a message to the console that indicates the constructor has been called.

b. Alter the getMessage method so that it returns the value of this String rather than a fixed message.

c. Now alter the Child class so that it from its default constructor it calls the new constructor on the parent class.
6. Alter the myMessage member variable in the Parent class so that it is declared to be protected. Confirm that the Child class can now refer to the variable directly, rather than having to call its parent’s version of getMessage to build the combined message. Can you think of the pros and cons of the two different mechanisms?

Part 2 – Abstract Classes and Methods

Tips

1. Your syntax reference sheet (Handout #4) has examples of how to define abstract methods
Exercises

1. Create an abstract class called AbstractParent. Give it the following two methods:

a. A public method called getMessage which calls the second method, generateString
b. Define generateString so that it a protected abstract method.

2. Create a second class called SecondChild, which extends AbstractParent. 
a. Implement the generateString method defined by its parent to return a suitable String
b. Add a main method so that it creates an instance of SecondChild and invokes its getMessage. Can you identify what is happening here?
 Part 3 – Polymorphism
Tips

1. You can download the classes for the intro2java.person package used in this section of exercises from http://www.ldodds.com/lectures/person.jar
2. You can view the javadocs for these classes at http://www.ldodds.com/lectures/javadocs/person/ 

3. Once you’ve downloaded the jar file, don’t forget 

a. to import the classes when they’re used

b. to update your CLASSPATH so that the JVM knows where to find the newly referenced classes. For example if you download the jar file to a directory called c:\intro2java, amend your CLASSPATH as follows:

set CLASSPATH=%CLASSPATH%;c:\intro2java\person.jar

Exercises

1. Create another class that extends AbstractParent, e.g. ThirdChild that generates an alternative message. Now create new class called AbstractParentTester which
a. Has a static method called viewMessage that accepts a single parameter of type AbstractParent and simply writes out the value returned by the getMessage method to the console.

b. A main method that creates an instance of SecondChild and an instance of ThirdChild, and then passes invokes the viewMessage method with each object in turn. Can you identify what is happening?

2. Create a class called PersonViewer. 
a. Give it a single public method called view that accepts a parameter of type Person. Person is an interface defined in the intro2java.person package. 

b. Implement the method so that it writes out, to the command-line, the available information for this person object
c. Implement a main method for PersonViewer that creates instances of Lecturer, Employee and Student and then invokes the viewPerson method for each. Can you identify what is happening?

3. Create another class called EnhancedPersonViewer

a. Create three versions of the view method that vary by their input parameters. I.e. create one that accepts an Employee another that accepts a Lecturer and a third method that accepts a Student.

b. Implement these methods so they write out to the console all information available about the objects. E.g. for an Employee write out its name, email and department. Tip: you can reuse your original PersonViewer here to write out the basic shared information by creating an instance of it and delegating it part of the task.

c. Finally add a main method to EnhancedPersonViewer which creates instances of each different type of person, and then invokes the viewPerson method on each. Can you identify what is happening?
L. Dodds, October 2002

3/3

